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INTRODUCCIÓN A LA TEORÍA CUÁNTICA DE CAMPOS I

H. FALOMIR

1. Effective Lagrangians

Effective Lagrangians incorporate to classical theory corrections which
are induced by quantum effects, like vacuum polarization. Usually, this
gives rise to non-renormalizable Lagrangians.

The paradigm of these procedures are the seminal papers by Heisenberg-
Euler and by Weisskopf (and some years later by Schwinger), which
incorporate non-linear corrections to the Maxwell Lagrangian for the
(low energy - large wavelength) electromagnetic background field, due
to its interaction with the Dirac electron field:

• W. Heinsenberg and H. Euler, Consequences of Dirac’s Theory of
Positrons, Z. Phys. 98 (1936) 714.

• V. Weisskopf, The electrodynamics of the vacuum based on the quan-
tum theory of electrons, English translation in Early Quantum Elec-
trodynamics: A source book, A.I. Miller Edt. Cambridge University
Press (1994).

• J. Schwinger, On gauge invariance and vacuum polarization, Phys.
Rev. 82 (1951) 664.

2. The proper time approach

In spinor QED, the vacuum-to-vacuum amplitud for the Dirac field
in the presence of a background (classical) electromagnetic field Aµ is
given in terms of functional determinant, a formal (gauge-invariant)
expression which admits the following representation,

(2.1)

S0[A] := ⟨Ω0 |S[A]|Ω0⟩ =

= Det
{
[γµ (i∂µ − eAµ)−m+ iε] [γµi∂µ −m+ iε]−1}

= expTr log
{
[γµ (i∂µ − eAµ)−m+ iε] [γµi∂µ −m+ iε]−1}

= expTr log
{
[γµ (i∂µ − eAµ) +m− iε] [γµi∂µ +m− iε]−1}
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2 H. FALOMIR

where, in the last step, we have taken into account that, with C = iγ0γ2,
CγµC−1 = − (γµ)t and we have assumed that (at least formally) the
trace is left invariant by cyclic permutations. For definiteness, in the
following we take e > 0.

So, we can write
(2.2)

2 log S0[A] =

Tr log
{[

(γµ (i∂µ − eAµ))
2 − (m2 − iε)

] [
(γµi∂µ)

2 − (m2 − iε)
]−1
}

and, taking into account the well known relation

(2.3) log
(a
b

)
= −

∫ ∞

0

ds

s

{
eis(a+iε) − eis(b+iε)

}
for ε > 0, we finally get the so-called proper time representation,
(2.4)

2 log S0[A] =

−Tr

∫ ∞

0

ds

s
eis
(
−m2 + iε

) {
eis [γ

µ (i∂µ − eAµ)]
2

− eis [γ
µi∂µ]

2
}

.

Now, we have

(2.5)

[γµ (i∂µ − eAµ)]
2 ={

1
2
{γµ, γν}+ 1

2
[γµ, γν ]

}
(i∂µ − eAµ) (i∂ν − eAν) =

= {ηµν14 − iσµν} (i∂µ − eAµ) (i∂ν − eAν)

= (i∂ − eA)2 14 − e
2
σµνFµν ,

where σµν = ı
2
[γµ, γν ].

It is not possible to evaluate the RHS of (2.4) for an arbitrary config-
uration of the background field. But we can go further by taking con-
stant and uniform (slowly varying) electromagnetic intensities, since in
this case we can write.

(2.6) eis [γ
µ (i∂µ − eAµ)]

2

= eis (i∂ − eA)2e
is
(
−e

2
σµνFµν

)
.

Notice that there is a scalar and a pseudo-scalar which can be con-
structed from Fµν ,

(2.7) F :=
1

2

(
E2 −B2

)
= −1

4
FµνF

µν , G := E ·B = −1

4
FµνF̃

µν .
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If both invariants are non-vanishing, one can always adopt a refer-
ence frame in which E and B are parallel and point in the third axis
direction. We take F03 = E > 0, F12 = B.
A suitable vector potential describing this situation is given by

(2.8) A0 = −Ex3 , A1 = 0 , A2 = Bx1 , A3 = 0 .

In this case we get

(2.9)
e
−is

e

2
σµνFµν

= e−ise
(
σ03E + σ12B

)
=

= e−iseEσ03
e−iseBσ12

,

since [σ03, σ12] = − [γ0γ3, γ1γ2] = 0.
On the other hand,

(2.10) (i∂ − eA)2 =
(
i∂0 + eEx3

)2 − (i∂1)
2 −
(
i∂2 − eBx1

)2 − (i∂3)
2 .

This can be written as

(2.11)

(i∂ − eA)2 = −
{
P1

2 + (eB)2
(
x1 + P2

eB

)2}−

−
{
P 2
3 + (−ieE)2

(
x3 − P0

eE

)2}
= −ei(

P2
eB )P1

{
P1

2 + |eB|2(x1)
2
}
e−i( P2

eB )P1−

−ei(−
P0
eE )P3

{
P3

2 + (−ieE)2 (x3)
2
}
e−i(− P0

eE )P3 ,

where Pµ = −i∂µ are the translation operators in the direction of xµ.

We recognize in the first brackets in the RHS of this equation the
Hamiltonian of a harmonic oscillator of mass m = 1/2 and frequency
ω = |2eB| and in the second one the Hamiltonian of another harmonic
oscillator of mass m = 1/2 and (complex) frequency ω = −i2eE(1+ ı0)
(with a small positive real part).
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So, we can write
(2.12)

2 log S0[A] =

−
∫

d4x

∫ ∞

0

ds

s
eis
(
−m2 + iε

) {
tr

[
e−iseEσ03

e−iseBσ12
]

×⟨x| e
i

(
P2P1

eB
− P0P3

eE

)
e
−is
{
P1

2 + |eB|2
(
x1
)2}

e
−is
{
P 2
3 + (−ieE)2

(
x3
)2}

e
−i

(
P2P1

eB
− P0P3

eE

)
|x⟩−

−4⟨x| eis (P)2 |x⟩
}

.

Now, inserting the identity in the form
∫
d4p |p ⟩⟨p|, and taking into

account that

(2.13) ⟨x|p⟩ = eix
µpµ

(2π)2
,

we get for the first matrix element in the brackets
(2.14)

M =
1

(2π)4

∫
d4p

∫
d4p′ eix

µ(pµ−p′µ)

×e
i
(p2p1
eB

− p0p3
eE

)
e
−i

(
p′2p

′
1

eB
− p′0p

′
3

eE

)
δ (p0 − p′0) δ (p2 − p′2)×

⟨p1|e
−is
{
P1

2 + |eB|2
(
x1
)2}

|p1⟩⟨p3|e
−is
{
P 2
3 + [−ieE(1 + ı0)]2

(
x3
)2}

|p3⟩

And since

(2.15)

1

(2π)2

∫
dp0

∫
dp2 e−i

p0
eE (p3−p′3)ei

p2
eB (p1−p′1) =

= e2E|B| δ (p1 − p′1) δ (p3 − p′3) ,
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M does not depends on x and reduces to

(2.16)

M =
e2E|B|
(2π)2

∫
dp1 ⟨p1|e

−is
{
P1

2 + |eB|2
(
x1
)2}

|p1⟩

×
∫

dp3 ⟨p3|e
−is
{
P 2
3 + [−ieE(1 + ı0)]2

(
x3
)2}

|p3⟩ ,

where the remaining integrals give the traces of the evolution operators
of the two harmonic oscillators in the proper time s.

Taking into account that, for the Hamiltonian H = 1
2m

P 2 + mω2

2
X2,

we have

(2.17) Tr
{
e−βH

}
=

1

2 sinh
(
βω
2

)
for ℜ(βω) > 0, we get

(2.18)

M =
1

(2π)2
|eB|

2 sinh (is|eB|)
eE

2 sinh (is [−ieE(1 + ı0)])
=

= − i

16π2

|eB|
sin (s|eB|)

eE

sinh (seE(1 + ı0))
.

On the other hand, taking into account that (iσ03)2 = −(iγ0γ3)2 =
14 and (σ12)2 = (iγ1γ2)2 = 14, we get

(2.19)
e−iseEσ03

= cosh (seE)14 − i sinh (seE) σ03 ,

e−iseBσ12
= cos (seB)14 + sin (seB) σ12 ,

and since tr{σ03} = 0 = tr{σ12} and tr{σ03σ12} = 0, we have

(2.20) tr

[
e−iseEσ03

e−iseBσ12
]
= 4 cosh (seE) cos (seB) ,

which appears multiplied by M in its contribution to the integrand in
the expression of 2 log S0[A] (see Eq. (2.12)).
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Subtracting to this product its e → 0 limit, which gives simply
−i/4π2s2, we finally get for the one-loop effective action
(2.21)

i

∫
d4xL(1)

eff (A) := log S0[A] =

i

8π2

∫
d4x

∫ ∞

0

ds

s
eis
(
−m2 + iε

)

×
{
cosh (seE) cos (seB)

eB

sin (seB)

eE

sinh (seE(1 + ı0))
− 1

s2

}
,

from which it follows that the one-loop effective Lagrangian is repre-
sented by
(2.22)

L(1)
eff (A) :=

1

8π2

∫ ∞

0

ds

s
eis
(
−m2 + iε

)

×
{
cosh (seE) cos (seB)

eB

sin (seB)

eE

sinh (seE(1 + ı0))
− 1

s2

}
.

(Notice that this integral presents a logarithmic divergence at the lower
limit, s = 0, which shows that a further renormalization is needed to
properly define the effective Lagrangian.)

Now, we will give this expression a covariant form. Notice that

(2.23) F2 + G2 =
1

4

(
E2 − B2

)2
+ E2B2 =

1

4

(
E2 +B2

)2
.

Then

(2.24) E2 =
√

F2 + G2 + F , B2 =
√

F2 + G2 −F ,

or

(2.25)
a := +

√√
F2 + G2 + F = E ,

b := +
√√

F2 + G2 −F = |B| ,

which replaced in Eq. (2.22) gives
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(2.26)

L(1)
eff (A) :=

1

8π2

∫ ∞

0

ds

s
eis
(
−m2 + iε

)

×
{
e2ab cosh (sea) cos (seb)

sinh (sea) sin (seb)
− 1

s2

}
=

= − 1

8π2

∫ ∞

0

dτ

τ
e−τm2

{
e2ab cos (τea) cosh (τeb)

sin (τea(1 + ı0)) sinh (τeb)
− 1

τ 2

}
,

where, in the last step, we have changed the integration path according
to the replacement s → −iτ .

Notice that the bracket in the last integrand behaves for small τ as

(2.27) −e2

3

(
a2 − b2

)
= −2

3
e2F =

e2

6
FµνF

µν ,

which is independent of τ and proportional to the Maxwell Lagrangian.
Therefore, a suitable (O (e2)) counterterm added to the (zero order)

Maxwell Lagrangian leads to the following finite expression for the elec-
tromagnetic effective Lagrangian, which incorporates the first quantum
corrections due to the interaction with the quantum Dirac field,

(2.28)

LMax(A) + L(1)
eff (A) = F − 1

8π2

∫ ∞

0

dτ

τ
e−τm2

×
{

e2ab cos (τea) cosh (τeb)

sin (τea(1 + ı0)) sinh (τeb)
− 1

τ 2
+

e2

3

(
a2 − b2

)}
.

Notice that these formal manipulations led us to a Lorentz and gauge
invariant integrand which is integrable in a neighborhood of τ = 0. It
also presents poles at the other zeros of sin (τea(1 + ı0)) in the denom-
inator, placed at τn = (nπ/ea)(1− ı0), with n = 1, 2, 3, · · · ).

3. Pair creation

In terms of the electric and magnetic field intensities, the one-loop
Heisenberg-Euler effective Lagrangian reads as
(3.1)

L(1)
HE := − 1

8π2

∫ ∞

0

dt

t
e−t×

×
[
e2EB coth

(
t
eB

m2

)
cot

(
t
eE

m2
(1 + i0)

)
− m4

t2
+

e2

3

(
E2 − B2

)]
.
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This is a well defined expression, since the (simple) poles of the inte-
grand are placed below the integration path:

(3.2) tn = n
πm2

eE
− i0 , n = 1, 2, · · · .

Therefore, for t ≃ tn, we have

(3.3)

1

sin
(
teE
m2 + i0

) =
(−1)n

sin
(
teE
m2 − nπ + i0

) =

= (−1)n

{
PV

(
1

sin
(
teE
m2 − nπ

))− i
πm2

eE
δ

(
t− n

πm2

eE

)}
.

This means that each pole contributes to the imaginary part of the
effective Lagrangian with

(3.4)

i
e2EB

8π2n
e
−n

πm2

eE coth

(
nπB

E

)

−→B→0 i
e2E2

8π3n2
e
−n

πm2

eE .

Taking into account that the probability of fermionic vacuum persis-
tence in the presence of the electromagnetic background field is given
by

(3.5) |⟨Ω0 |S[A]|Ω0⟩|2 = |S0[A]|2 =
∣∣∣ei ∫ d4xL(1)

eff (A)
∣∣∣2 = e−

∫
d4xΓ(A) ,

where

(3.6) Γ(A) := 2 Im
[
L(1)

HE(A)
]
,

is the rate of a e+e− pair creation per unit volume and unit time. We
see that

(3.7) Γ(A) =
e2E2

4π3

∞∑
n=1

e−nπm2

eE

n2
=

e2E2

4π3
e
−πm2

eE
(
1 +O

[
e−

πm2

eE

])
This is only appreciable for E ≈ Ec, where the critical value

1 is Ec :=
m2/e ≃ 1.3× 1018 Volt/meter.

1In Dunne’s report units, Ec := m2c3/~e
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4. Weak-field asymptotic expansion of the effective
Lagrangian

The exponential cut in the integrand in Eq. (3.1) allows one to sub-
tract and add any partial sum of the Laurent series expansion of the
product coth (tB/Ec) cot (tE/Ec), to generate an asymptotic expansion
of the one-loop effective Lagrangian for small values of the electromag-
netic background field (compared with Ec).

Let us recall that

(4.1) coth(z) =
∞∑
k=0

22kB2k

(2k)!
z2k−1 , cot(z) =

∞∑
k=0

(−1)k22kB2k

(2k)!
z2k−1 ,

where B2k are the Bernoulli numbers,

(4.2) B2k = (−1)k+1 2(2k)!

(2π)2k
ζ(2k) .

Therefore, we have the asymptotic expansion

(4.3)

L(1)
HE ≍ −m4

8π2

∑
k+n≥2

(−1)k22k+2nB2kB2n

(2k)!(2n)!

(
E2kB2n

E2k+2n
c

)
×

×
∫ ∞

0

t2k+2n−3 e−tdt =

= −m4

8π2

∑
k+n≥2

(−1)k22k+2n(2k + 2n− 3)! B2kB2n

(2k)!(2n)!

(
a2kb2n

E2k+2n
c

)
,

where we have written the last expression in a Lorentz invariant form,
with

(4.4)
a2 =

√
F2 + G2 + F , b2 =

√
F2 + G2 −F

⇒ a2 − b2 = 2F , a2b2 = G2 .
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The first terms in this expansion are2

(4.5)

L(1)
HE ≍ m4

360 π2Ec
4

{(
a2 − b2

)2
+ 7a2b2

}
+

+
m4

1260 π2Ec
6

(
a2 − b2

){
2
(
a2 − b2

)2
+ 13a2b2

}
+ · · ·

=
m4

360 π2Ec
4

{
4F2 + 7G2

}
+

m4

1260 π2Ec
6 2F

{
8F2 + 13G2

}
+ · · · ,

The first term in the RHS is the effective Lagrangian derived by
Heisenberg and Euler in 1936. In terms of the two invariants F and G,

(4.6) LM + LHE = F +
m4

360 π2Ec
4

{
4F2 + 7G2

}
,

It gives the amplitude for light-light scattering at low energy3 (or large

wavelength), a very tiny effect of the order of e4

360π2m4 = α
90πE2

c
=: ϱ

2
.

Notice that LHE contains no derivatives of the electromagnetic field;
these corrections would be further suppressed by factors of ω/m (The
full process was not solved until 19514).

One can see that the RHS of (4.3) is not a convergent but only a
divergent asymptotic series by considering the purely magnetic back-
ground case (E = 0). Indeed, we have

(4.7) L(1) ≍ −m4

8π2

∞∑
n=2

22n B2n

(2n− 1)(2n− 2)(2n− 3)

(
B

Ec

)2n

.

where the Bernoulli number has the asymptotic form

(4.8) B2n ≍ (−1)n−14
√
nπe2n[logn−log π−1] ,

which is alternate in sign and strongly growing with n.
In the purely Electric background, the coefficient has an additional

factor (−1)n, and the series is divergent and nonalternating.

2G.V. Dunne, in From Fields to Strings, Vol. 1, eds. M. Shifman, A. Vainshtein
and J. Wheater (World Scientific, 2005), p. 445.

3H. Euler and B. Köckel, On the scattering of light from light in the Dirac Theory,
Naturwiss 23, (1935) 246.

4R. Karplus and M. Neuman, Phys. Rev. 83, (1951), 776.
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5. Polarization phenomena in electromagnetic
backgrounds

We have already mentioned the pair production due to the presence
of an electric background of the order of Ec, and the tiny effect of
photon - photon scattering mediated by fermions.

There are also dispersive effects on the propagation of an electro-
magnetic wave produced by the presence of a constant uniform elec-
tromagnetic background field.

Basically, the polarization of the fermionic vacuum makes it to act
like a birefringent medium with two different indices of refraction, de-
pending on the polarization of the propagating wave.

Let us consider the Heisenberg - Euler correction to the Maxwell
Lagrangian,

(5.1) LM + LHE = F +
m4

360 π2Ec
4

{
4F2 + 7G2

}
,

with a total electromagnetic field which is the sum of a (nearly) con-
stant and uniform background, Fµν , plus the field of an optical wave,
fµν , and let us look for the (classical) equation of motion of this fluc-
tuation.

In so doing, it is sufficient to retain the piece quadratic in fµν , since
the linear term is a total divergence for a constant background, and the
higher order terms (cubic and quartic in fµν) are suppressed by factors
of fµν/Ec.

We get5

(5.2)

fµνfαβ

{
−1

4
gµαgνβ +

m4

360 π2Ec
4

[
−2Fgµαgνβ + F µνF αβ

−7

4
Gϵµναβ + 7

4
F̃ µνF̃ αβ

]}
= fµνfαβM

µναβ ,

where F̃ µν := 1
2
ϵµναβFαβ and Mµναβ = Mαβµν = −M νµαβ.

Calling

(5.3) ϱ := m4/(180 π2Ec
4) = α/(45πE2

c )

and writing fµν = ∂µaν − ∂νaµ, we obtain the modified Maxwell equa-
tions by taking the functional derivative

(5.4)
δ

δaσ

∫
d4x fµνfαβM

µναβ = 0 .

5E. Brezin and C. Itzykson, Physical Review D3, (1971) 618.
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We get

(5.5)
∂µf̃

µν = 0 ,

(1 + 4ϱF) ∂µf
µν − 2ϱ

[
F µνF αβ +

7

4
F̃ µνF̃ αβ

]
∂µfαβ = 0 .

Let us look for a solution of the form aν(x) = εν(k)e
−ik·x ⇒

fµν = −i [kµεν(k)− kνεµ(k)] e
−ik·x, which replaced in the previous equa-

tion leads to

(5.6)
(1 + 4ϱF)

[
k2εν(k)− kν(k · ε(k)

]
=

= 2ϱ

[
F µνF αβ +

7

4
F̃ µνF̃ αβ

]
kµ [kαεβ(k)− kβεα(k)] .

This means that the polarization vector must have the form

(5.7) εν(k) = ξ0k
ν + ξ1kµF

µν + ξ2kµF̃
µν .

where ξ0 represents an irrelevant gauge transformation, and can not be
determined by the equations.

Replacing in the modified Maxwell equation, we get for the other
two parameters
(5.8)

(1 + 4ϱF) k2
[
kµF

µνξ1 + kµF̃
µνξ2

]
−

−4ϱ

[
F µνF αβ +

7

4
F̃ µνF̃ αβ

]
kµkα

[
kσFσβξ1 + kσF̃σβξ2

]
=

= kµF
µν
{
(1 + 4ϱF) k2ξ1 − 4ϱkαF

αβ
[
kσFσβξ1 + kσF̃σβξ2

]}
+

+kµF̃
µν
{
(1 + 4ϱF) k2ξ2 − 7ϱkαF̃

αβ
[
kσFσβξ1 + kσF̃σβξ2

]}
= 0 .

Considering the independent components of F µν , and taking into
account that

(5.9)
kµFµνF̃

νλkλ = k2G
kµF̃µνF̃

νλkλ = kµFµνF
νλkλ − 2F k2 ,

we see that the coefficients ξ1,2 are solutions of the homogeneous system

(5.10)

(
(1 + 4ϱF ) k2 + 4ϱ k · F · F · k , 4ϱ k2G
7ϱ k2G , (1− 10ϱF) k2 + 7ϱ k · F · F · k

)(
ξ1
ξ2

)
= 0 ,

where

(5.11)
k · F · F · k := kµFµνF

νλkλ =

= k0
2E2 + k2B2 − 2k0k · E×B− (k · E)2 − (k ·B)2 .
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Nontrivial solutions require the determinant of this matrix to vanish.

For simplicity, let us consider the case in which G = 0 (E ⊥ B, or
pure magnetic or pure electric field). In this case, the normal modes
are determined by setting the diagonal elements of this matrix equal
to zero.

For definiteness, let us consider the case of a pure magnetic back-
ground: F12 = B = −F21 and the other components equal to zero. We
get

(5.12)
(1− 2ϱB2) k2 + 4ϱ

(
k1

2 + k2
2
)
B2 = 0 , mode 1,

(1 + 5ϱB2) k2 + 7ϱ
(
k1

2 + k2
2
)
B2 = 0 , mode 2.

which implies for the dispersion relations

(5.13)


ω1

2 = k2 −
(

4ϱB2

1− 2ϱB2

)
k⊥

2 ,

ω2
2 = k2 −

(
7ϱB2

1 + 5ϱB2

)
k⊥

2 ,

where k⊥ is the component of k perpendicular to the magnetic field.
Let us introduce the index of refraction of each mode through the

definitions ω := k0 , n(k) := k/ω , n(k) := |n(k)|.
To first order in ϱ, we get for the indices of refraction and polarization

vectors

(5.14)
n1

2 − 1 = 4ϱB2sin θ2 , ε1 = n×B (transverse mode) ,
n2

2 − 1 = 7ϱB2sin θ2 , ε2 = B− n (n ·B) (parallel mode) ,

where the angle θ is determined by cos θ = k ·B/|k||B| and the terms
transverse and parallel refer to the orientation of the polarization vector
with respect to the plane determined by the vectors k and B. We have
also chosen the gauge parameter ξ0 in such a way that ε1,2

0 = 0.
Notice that the difference in refraction indices is maximal at θ = π/2

(k ⊥ B) and vanishing for θ = 0 (k ∥ B) . Moreover, the polarization
vector for the parallel mode is not perpendicular to k: n2 · ε2 = (n2 ·
B)(1− n2

2) ̸= 0.
These two different values of the refraction index imply birefringence.

For example, an incident wave with frequency ω, wavelength λ = 2π/ω
(c = 1) and polarization vector ε(t) = (α1ε1 + α2ε2) cos(ωt), which
propagates perpendicularly to the uniform magnetic field B along a
distance L, turns into an elliptically polarized wave,

(5.15) ε(t) = α1ε1 cos[ωt− 2πn1L/λ] + α2ε2 cos[ωt− 2πn2L/λ] ,
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where the phase shift between the two rays is

(5.16) ϕ = 2π△n
L

λ
≃ 2π

3

2
ϱB2 L

λ
=

αB2

15Ec
2

L

λ
.

On the other hand, the flux of energy follows the direction of the
group velocity, vG := ∂ω/∂k, which is given for each mode (to lowest
order in ϱ) by

(5.17)
vG,1 =

(
1− 4ϱB2

)
n+ 4ϱ (n ·B)B (transverse mode) ,

vG,2 =
(
1− 7ϱB2

)
n+ 7ϱ (n ·B)B (parallel mode) .

We see that the energy propagates in a direction different from that of
its wave vector, as occurs in an anisotropic cristal, except for n ⊥ B
or n ∥ B.

In the case of a purely electric field, it can be seen that the roles of
the two modes are interchanged,
(5.18){

n1
2 − 1 = 7ϱE2sin θ2 , ε1 = n× E (transverse mode) ,

n2
2 − 1 = 4ϱE2sin θ2 , ε2 = E− n (n · E) (parallel mode) ,

and similar conclusions are reached.
In the case of crossed fields, E ⊥ B, one obtains a similar result to

lowest order in ϱ6. For example, for low frequency stationary waves,
the phase shift produced is expressed in terms of the intensity of the
standing wave as

(5.19) ϕ =
4αI

15Ec
2

L

λ
.

This is what could be measured in experiments with high-intensity
lasers probed by a linearly polarized X-ray pulse.
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